How can I simply implement cognitive science findings to improve learning?

Over the last year I’ve read three books which have made me think deeply about cognitive science and how to improve learning – (i) The Hidden Lives of Learners (ii) Make it Stick (iii) Why Don’t Students Like School? Two very good summaries of the principles in these books can be found here and here.

For me, the most important principles from these books are:

  1. Students should meet any concept at least three different times for it to pass into long-term memory.
  2. Instruction and practice of a concept should be interleaved with a different (but not totally unrelated) concept. So instead of teaching topic 1 followed by topic 2, teach them ‘together’ (i.e. teach one or two lessons on the first topic then switch to topic 2, etc). This point also suggests that concepts that are very similar (e.g. mean, mode and median or conduction, convection and radiation) should not be taught together.
  3. Distributed (or spaced) practice – instead of practicing a skill during a single large block of time (massed practice, aka cramming) distribute the time spent practicing over a longer duration.
  4. The Testing effect – students learn more from regular low-stakes testing, whether that’s self testing (by using flash cards, etc), being tested by peers or testing in the classroom. So in a pattern of ‘study, test, test, final test’ students learn more than by following a ‘study, study, study, final test’ pattern.

All of this is great, but a little overwhelming. How can I simply implement these suggestions without having to re-plan the entire curriculum or adding excessively to my already substantial workload? Below are some suggestions based on what I’ve been trying in my classroom recently.

  • Using starters to review knowledge and skills from previous lessons by students answering a series of questions, drawing and labeling a diagram, or some other activity. Often I’ll ask students to answer questions from topics that we studied not just from the last lesson but from the last few months to make sure that they can remember the key content. If students can’t remember how to do something they can ask the other pupils on their table for help. This combines low-stakes testing with distributed practice.
  • If consecutive lessons in a unit will teach cognitively similar concepts (e.g. conduction, convection and radiation) then mix up the order of the lessons so these are separated by another not so similar concept.
  • Use quizzing regularly (once a week or every two weeks). This is a longer set of questions to what I’d use in a starter (approx 20-25 instead of 4-6). I almost always use multiple choice questions. This is ideal to set as homework and can easily be electronically marked by using systems such as Google Forms and Flubaroo or Quick Key. Not only does this make use of the testing effect but it also allows you to assess students learning against individual concepts. Again, I ask questions not just from recent lessons but from two or more months ago to aid retention of key content.

Sources of multiple choice questions

As you see above, I’m advocating using multiple choice questions. However where can you get good quality questions from? Below are the sources I’ve used.

  1. It might sound obvious, but search Google for your topic and add ‘multiple choice questions’. So far I’ve been able to find some questions for every topic I’ve searched for on the net.
  2. The tests on the BBC Bitesize website.
  3. Make your own – I’d recommend that for every lesson you write 2 or 3 questions that assess the learning against the learning outcomes that you can use later on. See this blog post for some guidance on writing good multiple choice questions.
  4. Get students to create their own (e.g during plenaries, revision sessions or for homework). Students can be supported with a questioning grid. Something I plan to introduce is Peerwise, which allows students to compete with each other in writing multiple choice questions.

If you teach maths you can use the Diagnostic Questions (DQ) website, created by Craig Barton and his team. It’s a free tool that allows teachers to share and download multiple choice questions and allows students to answer them online. Recently it’s been opened up to allow questions for other subjects to be created, and at the time of writing there are a few hundred Science and MFL questions.

A really nice feature of the DQ website is that if students answer questions on the website they can add a sentence to two to explain their reasoning, and you as the teacher can review that. Students can also look at the explanations of other students for correctly answered questions.

However one disadvantage of the DQ website is that questions are created, stored and downloaded as images only. So if you want to export the questions to a Word document, Google Form or other program, you have to type them out. This is a real shame because you can’t easily edit or adapt a question. Multiple choice questions can be modified in several ways, including turning them into two-tier questions and confidence grids, so the inability to do this easily is very disappointing. A good York Science publication about this can be found at the following link – Developing formative assessment in practice.

3 thoughts on “How can I simply implement cognitive science findings to improve learning?

  1. Pingback: Threshold Concepts (3) Teaching & spacing (…how long is a piece of string?…) | NDHS Blog Spot

  2. Pingback: Teaching pupils how to revise | EviEd

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s